Aug. 31, 2020
Largest-ever study of glacial lakes shows dramatic increases in volume since 1990
Glaciers are retreating on a near-global scale. It takes only a short drive from Calgary up to the Athabasca Glacier in the Columbia Icefields to see an example of the changing landscape apparent within our lifetime.
A new study led by Dr. Dan Shugar, PhD, with collaborators from governments and universities in Canada, the United States and United Kingdom, uses satellite data from and Google Earth Engine to analyze all of the world鈥檚 glacial lakes. , it is the largest-ever study of glacial lakes in terms of geographic scope.
The study found that the volume of water in glacial lakes has increased by 50.8 cubic kilometres 鈥斅燼bout 50 per cent 鈥斅爏ince 1990. To put that number into context, the increase in glacial lake water over the last 30 years is equivalent to the volume of聽20 million Olympic-size swimming pools.聽
Glacial lake聽volumes around the world聽currently total approximately 156 cubic kilometres of water.聽While some of the water from melting glaciers ends up flowing into the oceans, a substantial amount also feeds glacial lakes, which have been growing dramatically over the last several decades. Because of this, communities in areas downstream from these growing glacial lakes are increasingly at risk of destruction due to聽serious flooding.
Big data analysis tools allow for expanded study scope
Shugar is an associate professor in the , and director of the . As leader of the Water, Sediment, Hazards, and Earth-surface Dynamics (waterSHED) Lab, he works across a variety of landscapes and time frames to understand how the Earth's surface evolves, particularly as a result of contemporary climate change.
His work on this study began as part of a grant from NASA that focused on using satellite remote sensing and other tools to understand changes in High Mountain Asia.
Initially, he had planned to use NASA鈥檚 data, aerial photos, and declassified spy imagery to examine approximately two dozen lakes over the span of five decades and hand-trace the changes.
Shugar and his former student at the University of Washington Tacoma decided to take advantage of new data analysis tools to scale up the analysis 鈥斅燼 decision that would not have been possible a decade ago. 鈥淲e wrote some scripts in Google Earth Engine, an online platform for very large analyses of geospatial data. We first wrote the code to look at all lakes in High Mountain Asia, and then decided to look at all glacial lakes in the world,鈥 Shugar explains. 鈥淔rom there, we were able to build a scaling relationship to estimate volume based on area of this large population of lakes.鈥
This change in process allowed them to look at the data in five time steps since 1990 to look at all the glaciated regions of the world except for Antarctica and analyze how the lakes changed over that period.
鈥漊sing these cloud-based big data tools was critical,鈥 Shugar says. 鈥淲e ended up analyzing 254,795 Landsat scenes. A couple of years ago, this project would have been impossible to do on a global scale 鈥斅爐here would have been so many terabytes of data that it would have been impossible to download and process all of it.鈥
Jim Best
Increase in glacial lake volume poses greatest dangers to downstream communities
The models used to date by the (IPCC) to translate glacier melt into sea level change assume that water from glacier melt is instantaneously transported to the oceans.
However, Shugar explains, 鈥淭hey know not all water is making it into the oceans immediately. However, until now, there was no data to estimate how much was being stored in lakes or groundwater. That was one of our driving reasons to scale up the study to a global analysis.
"Assuming all of the glacial lakes dumped at once 鈥斅爓hich is not happening 鈥斅爐hat 156 cubic kilometres of water spread out evenly across all oceans would raise sea level by about 0.43 millimetres. The sea level component is not large, but it was unknown until now.
鈥淭he volume of water being stored is important for a number of reasons,鈥 he continues. 鈥淲hile one is to understand how the climate is affecting glaciers and sea levels, the most important consideration is the change in the risk landscape.鈥
Glacial lakes, which are often dammed by ice or glacial sediment called a moraine, are not stable like the mountain lakes most are used to seeing. Rather, they can be quite unstable and they can burst their banks or dams, causing massive floods downstream. These kinds of floods from glacial lakes, also known as glacial lake outburst floods or GLOFs, have been responsible for thousands of deaths over the last century, as well as the destruction of villages and infrastructure and livestock.
Dan Shugar
鈥淭his widespread glacial lake expansion represents a threat to communities and ecosystems 鈥斅爏omething people have not been thinking about in the public climate change discussion,鈥 says Dr. Jeffrey Kargel, PhD, senior scientist at the and a co-author on the paper.
鈥Glacial melting is associated with the loss of fresh water and rivers like the Ganges. This is a dimension of problem that needs to be considered more than it has been.鈥
鈥淭he big issue is for many parts of the world where people live downstream from these hazardous lakes, mostly in the Andes and in places like Bhutan and Nepal, where GLOFs can be devastating,鈥 Shugar says. 鈥淔ortunately, organizations like the UN are doing or facilitating a lot of monitoring work and some mitigation work where they鈥檙e lowering the lakes to try and decrease the risks.
"Since we don鈥檛 have much in the way of infrastructure or communities that are downstream, the chances of a GLOF having major impacts in North America are fairly low. But we鈥檙e not immune to it.鈥
Dan Shugar