²ÝÝ®ÎÛÊÓƵµ¼º½

UofC " This Is Now

Search Calendar:


Site Navigation
Welcome
Important Notice and Disclaimer
Applications for Admission Schedule
Examinations Schedule
Fees Schedule
Academic Schedule
Undergraduate Degrees with a Major
Collaborative Degrees
Combined Degrees
Minor Programs
Student Services
Undergraduate Admissions
Academic Regulations
Tuition and General Fees
English for Academic Purposes Program
Faculty of Communication and Culture
Faculty of Education
Faculty of Environmental Design
Faculty of Fine Arts
Faculty of Graduate Studies
Haskayne School of Business
Faculty of Humanities
Faculty of Kinesiology
Faculty of Law
Faculty of Medicine
Faculty of Nursing
Schulich School of Engineering
Faculty of Science
Faculty of Social Sciences
Faculty of Social Work
Faculty of Veterinary Medicine
Collaborative Programs
Co-operative Education/Internship
Continuing Education
Awards and Financial Assistance
COURSES OF INSTRUCTION
How to Use
Courses of Instruction by Faculty
Course Descriptions
A
B
C
D
E
Earth Science EASC
East Asia ETAS
East Asian Language Studies EALS
East Asian Studies EAST
Ecology ECOL
Economics ECON
Education Teacher Preparation EDTP
Educational Research EDER
Electrical Engineering ENEL
Energy and Environment, Engineering ENEE
Energy and Environmental Systems EESS
Energy Management ENMG
Engineering ENGG
English ENGL
English for Academic Purposes Program EAPP
Entrepreneurship and Innovation ENTI
Environmental Design EVDS
Environmental Design Architecture EVDA
Environmental Design Planning EVDP
Environmental Engineering ENEN
Environmental Science ENSC
F
G
H
I
J, K
L
M
N, O
P
R
S
T, U
V, W, Z
About the ²ÝÝ®ÎÛÊÓƵµ¼º½
Where
Who's Who
Glossary of Terms
Contact Us
Summary of Changes
²ÝÝ®ÎÛÊÓƵµ¼º½ Calendar 2009-2010 COURSES OF INSTRUCTION Course Descriptions E Engineering ENGG
Engineering ENGG

Instruction offered by members of Schulich School of Engineering.

Associate Dean (Academic & Planning) - R. Brennan

Junior Courses
Engineering 201       Behaviour of Liquids, Gases and Solids
An introduction to the behaviour of fluids and solids; phase transformations, the phase rule and phase diagrams. Ideal and real gases; equations of state and their engineering applications; simple kinetic theory; transport properties of fluids. Liquid state; vapor pressure; shear behaviour; flow of fluids in pipelines. Solids; crystalline and non-crystalline structure; non equilibrium solid phases; electrical and thermal conductivity; dislocations; stress and strain; creep; fracture.
Course Hours:
H(3-1.5T-3/2)
back to top
Engineering 205       Engineering Mechanics I
Statics: Force vectors; equilibrium of particles in two and three dimensions; force system resultants; equilibrium of a rigid body in two and three dimensions; trusses; frames, machines and beams. Dynamics: Kinematics and kinetics of particles.
Course Hours:
H(3-1.5T)
Antirequisite(s):
Note: Not open to students with credit in Engineering 203.
back to top
Engineering 209       Engineering Economics
The basic tools and methodology of engineering economic studies. Topics include investment decisions, theory of replacement, economies of scale, externalities, social decision making and government regulation. Examples are drawn from engineering projects.
Course Hours:
H(3-1T)
Prerequisite(s):
Registration in the Faculty of Engineering with second-year standing or higher. If not registered in the Schulich School of Engineering, consent of the Department of Economics. If required for APEGGA, consent of the Schulich Undergraduate Studies Office.
Also known as:
(Economics 209)
back to top
Engineering 233       Computing for Engineers I
Overview of computer systems. Functions of software components: operating systems, editors, compilers. Programming in a high-level language: selection and loop structures, routines, array and record types, text file operations. Introduction to object-based programming: use of class libraries and construction of simple classes.
Course Hours:
H(3-2)
back to top
Engineering 251       Design and Communication I
The principles of engineering design, engineering graphics and written communication learned within a hands-on project-based experience for engineering students. Safety in the laboratory; working in a team environment; core skills for engineering students; process of engineering design; graphical communication: theory of projection, multiview representation, descriptive geometry, sketching, information for manufacturing; written communication: style, format, organization, preparation and presentation skills. Real-life examples of design and engineering practice across all disciplines. Core competencies will be learned primarily within the context of team-based design projects.
Course Hours:
H(1-4.5)
Antirequisite(s):
Not open to students with credit in Engineering 215.
back to top
Engineering 253       Design and Communication II
A continuation of Engineering 251. Students will perform more advanced team-based projects that integrate mathematical, scientific and engineering knowledge and skills. Issues that play critical roles in engineering design will be introduced, such as project management, societal and environmental awareness, health and safety, design for safety, sustainable development, information access.
Course Hours:
H(1-4.5)
Prerequisite(s):
Engineering 251.
back to top
Senior Courses
Engineering 311       Engineering Thermodynamics
Thermodynamic systems, properties and state, energy, temperature and the zeroth law, equilibrium, properties of the pure substance, equations of state. Work, reversibility, heat, first law, specific heats, enthalpy, ideal gas, flow systems. Entropy and the second law, Carnot cycle, thermodynamic temperature scale, process equations, cycles, process efficiencies, calculation of entropy change.
Course Hours:
H(3-1.5T-3/2)
Prerequisite(s):
Engineering 201 and Applied Mathematics 217.
back to top
Engineering 317       Mechanics of Solids
Axial-force, shear-force and bending moment diagrams; stress and strain; stress-strain relations; elastic and plastic behaviour; elastic constants; simple statically indeterminate (one-degree) problems; review of moment of inertia, product of inertia and principal axes of inertia; elastic torsion of circular shafts; elastic and plastic bending about principal axes of beams with symmetrical cross-section; composite beams; shear stresses due to bending; Mohr's circle for stress; thin-walled pressure vessels; deflection of beams by integration; Euler buckling.
Course Hours:
H(3-1.5T-3/2)
Prerequisite(s):
Engineering 205 or 203 and Applied Mathematics 217.
back to top
Engineering 319       Probability and Statistics for Engineers
Presentation and description of data, introduction to probability theory, Bayes theorem, discrete and continuous probability distributions, estimation, sampling distributions, tests of hypotheses on means, variances and proportions, simple linear regression and correlation. Applications are chosen from engineering practice.
Course Hours:
H(3-1.5T)
Prerequisite(s):
Applied Mathematics 219.
Antirequisite(s):
Note: Credit towards degree requirements will be given for only one of Anthropology 307, Applied Psychology 301 and 303, Engineering 319, Political Science 399, Psychology 312, Sociology 311, Statistics 201 and 211, 213 and 217, 327, 333, 357; that one being a course(s) appropriate to the particular degree program. Not open to students with credit in Biomedical Engineering 319.
back to top
Engineering 325       Electric Circuits and Systems
Topics in electric circuits and electric systems related to engineering theory and practice in the areas of Chemical, Civil, Geomatics, Mechanical and Manufacturing Engineering.
Course Hours:
H(3-1T-3/2)
Prerequisite(s):
Physics 259.
back to top
Engineering 349       Engineering Mechanics II
Review of Mechanics I fundamentals. Mass Centre, moments of inertia; composite bodies. Kinematics and kinetics of rigid bodies. Work and energy principles. Friction and work of friction. Conservative systems. Impulse and momentum.
Course Hours:
H(3-1.5T)
Prerequisite(s):
Engineering 205, Applied Mathematics 217 and 219.
back to top
Engineering 391       Advanced Topics I
Advanced topics in engineering science and design.
Course Hours:
Q(1.5-0)
Prerequisite(s):
Consent of the Associate Dean (Academic).
MAY BE REPEATED FOR CREDIT
back to top
Engineering 393       Advanced Topics II
Advanced topics in engineering science and design.
Course Hours:
H(3-0)
Prerequisite(s):
Consent of the Associate Dean (Academic).
MAY BE REPEATED FOR CREDIT
back to top
Engineering 407       Numerical Methods in Engineering
The theory and use of numerical computational procedures to solve engineering problems. Methods for: solution of nonlinear equations, solution of simultaneous linear equations, curve fitting, solution of the algebraic eigenvalue problem, interpolation, differentiation, integration, solution of ordinary differential equations and solution of partial differential equations are included. The laboratory includes the application to elementary problems and the computer solution of comprehensive engineering problems.
Course Hours:
H(3-2T)
Prerequisite(s):
Engineering 233 and Applied Mathematics 307.
back to top
Engineering 481       Technology and Society
An interpretive course on the interrelationship between technology and society. The first part of the course surveys significant historical developments within disciplinary areas such as energy, materials, production processes, structures, transport, communications, and computation. Sequence within each area: discovery, development, application, impact, future. Social and economic consequences are also considered. The latter part of the course explores contemporary problems of society and technology.
Course Hours:
H(3-1.5S)
Notes:
Available to students registered in other faculties as well as third-year or fourth-year Engineering students. This course does not presuppose any formal background in Engineering or Science.
back to top
Engineering 513       The Role and Responsibilities of the Professional Engineer in Society
The professional duties and responsibilities of the engineer as they relate to society. Ethics and the engineering profession. Public and worker safety and health. Design for safety. Sustainable development. The engineer and the environment. Environmental stewardship. Essentials of leadership. Gender issues. Employment equity. Fundamentals of Engineering Law. Professional organizations. The Engineering Professions Act.
Course Hours:
H(3-0)
back to top