²ÝÝ®ÎÛÊÓƵµ¼º½ : Biochemistry BCEM

²ÝÝ®ÎÛÊÓƵµ¼º½

UofC " This Is Now

Search Calendar:


Site Navigation
Welcome
Important Notice and Disclaimer
Fee Payment Deadlines
Academic Schedule
Undergraduate Degrees with a Major
Combined Degrees
Minor Programs
Student Services
Undergraduate Admissions
Academic Regulations
Tuition and General Fees
English for Academic Purposes Program
Faculty of Arts
Faculty of Education
Faculty of Environmental Design
Faculty of Graduate Studies
Haskayne School of Business
Faculty of Kinesiology
Faculty of Law
Faculty of Medicine
Faculty of Nursing
Qatar Faculty
Schulich School of Engineering
Faculty of Science
Faculty of Social Work
Faculty of Veterinary Medicine
Co-operative Education/Internship
Continuing Education
Awards and Financial Assistance
COURSES OF INSTRUCTION
How to Use
Courses of Instruction by Faculty
Course Descriptions
A
B
Biochemistry BCEM
Biology BIOL
Biomedical Engineering BMEN
Botany BOTA
Business and Environment BSEN
C
D
E
F
G
H
I
J, K
L
M
N, O
P
R
S
T, U
V, W, Z
About the ²ÝÝ®ÎÛÊÓƵµ¼º½
Where
Who's Who
Glossary of Terms
Contact Us
Archives
Summary of Revisions
²ÝÝ®ÎÛÊÓƵµ¼º½ Calendar 2013-2014 COURSES OF INSTRUCTION Course Descriptions B Biochemistry BCEM
Biochemistry BCEM

Instruction offered by members of the Department of Biological Sciences in the Faculty of Science.

Department Head – R.M.R. Barclay

Students interested in taking Biochemistry courses are urged to read the advice in the Faculty of Science Program section of this Calendar.

†Limited amounts of non-scheduled class time involvement will be required for these courses.

Senior Courses
Biochemistry 341       Biochemistry of Life Processes
Emphasis is placed on describing the chemistry of biochemical molecules including proteins, carbohydrates, lipids, and nucleic acids, and how this relates to cell structure and life processes. Basic concepts of metabolism are introduced, focusing on the breakdown of carbohydrates for energy. The laboratory component reinforces learning of the lecture material, while teaching technical skills and the analysis and interpretation of experiments involving biochemical molecules.
Course Hours:
H(3-3/2)
Prerequisite(s):
Chemistry 351.
Antirequisite(s):
Credit for both Biochemistry 341 and 393 will not be allowed.
Notes:
Not open to majors in the Department of Biological Sciences or Natural Sciences concentrators in Biological Sciences.
back to top
†B¾±´Ç³¦³ó±ð³¾¾±²õ³Ù°ù²â 393       Introduction to Biochemistry
The structure and function of carbohydrates, amino acids, proteins, lipids, coenzymes and enzymes will be presented, along with an introduction to metabolism and energy transduction. Laboratory: Overview of current biochemical techniques for studying proteins, enzymes and metabolic pathways.
Course Hours:
H(3-3/2)
Prerequisite(s):
Biology 311 or Medical Sciences 341 (BHSc students only), and Chemistry 351.
Antirequisite(s):
Credit for both Biochemistry 393 and 341 will not be allowed.
Notes:
Prior or concurrent completion of Biology 331 is strongly recommended.  Biochemistry 393 and 443 are the recommended courses for students wishing to take only two biochemistry courses. These courses cover biochemistry broadly and include the topics students are expected to understand prior to admission to Medicine, Veterinary Medicine, Dentistry, Optometry and other professional schools having two courses in biochemistry as recommended preparation or requirements for admission.
back to top
Biochemistry 401       Biochemistry Laboratory Techniques I
Recombinant DNA techniques, protein expression and mutagenesis stressing nucleic acid and protein properties relevant to these techniques. Practical experience in the laboratory includes DNA amplification (PCR), gene cloning and expression, nucleic acid-protein bioinformatics and introduction to methods for working with proteins. Emphasis on the scientific process: experimental design, data analysis and dissemination of results.
Course Hours:
H(3-6)
Prerequisite(s):
One of Chemistry 353 or 355; and Biochemistry 393.
Antirequisite(s):
Credit for both Biochemistry 401 and either 541 or Cellular, Molecular and Microbial Biology 451 will not be allowed.
Notes:
Enrolment in this course may be limited. See Enrolment Limitations in Courses in the Faculty of Science section of this Calendar.   
back to top
Biochemistry 403       Biochemistry Laboratory Techniques II
Chromatography, protein purification, biophysical and enzymatic means of characterizing proteins. Practical experience in the laboratory with protein purification and protein characterization techniques selected to complement the selection from Biochemistry Laboratory Techniques I.
Course Hours:
H(3-6)
Prerequisite(s):
Chemistry 311 and Biochemistry 393 and 471.
Antirequisite(s):
Credit for both Biochemistry 403 and 541 will not be allowed.
Notes:
Enrolment in this course may be limited. See Enrolment Limitations in Courses in the Faculty of Science section of this Calendar.   
back to top
Biochemistry 431       Proteins and Proteomics
Protein structure and chemistry: structural motifs, ligand-binding, conformational changes, chemical modification; protein folding; structure prediction by molecular modelling. Identification of proteins in the proteome: 2D gel electrophoresis and chromatography, mass spectrometry; metalloproteins; post-translational modifications; protein-protein interactions.
Course Hours:
H(3-0)
Prerequisite(s):
Biochemistry 393 and one of Chemistry 353 or 355.
Antirequisite(s):
Credit for both Biochemistry 431 and 531 will not be allowed.
back to top
Biochemistry 443       Metabolism and basic nucleic acid biochemistry
Intermediary carbohydrate, lipid and nitrogen metabolism, and the regulation of these metabolic pathways; nucleic acid chemistry, structure, stability and enzymatic processing.
Course Hours:
H(3-4/2)
Prerequisite(s):
One of Chemistry 353 or 355; and Biochemistry 341 or 393.
Notes:
Enrolment in this course may be limited. See Enrolment Limitations in Courses in the Faculty of Science section of this Calendar. Not required for majors in the Biochemistry program.  Biochemistry 393 and 443 are the recommended courses for students wishing to take only two biochemistry courses. These courses cover biochemistry broadly and include the topics students are expected to understand prior to admission to Medicine, Veterinary Medicine, Dentistry, Optometry and other professional schools having two courses in biochemistry as recommended preparation or requirements for admission.
back to top
Biochemistry 471       Physical Biochemistry
The laws of thermodynamics as they apply to biological systems: the hydrophobic effect, properties of water, electrolyte solutions and ligand binding. Optical spectroscopic methods including UV/visible absorption, fluorescence, and infrared as applied to biological molecules.
Course Hours:
H(3-2T)
Prerequisite(s):
Biochemistry 341 or 393; Chemistry 353 or 355; one of Mathematics 249, 251, 281, or Applied Mathematics 217 and one of Mathematics 253, 283, 211, 213, or Applied Mathematics 219; and Physics 211 or 221, and 223.
back to top
Biochemistry 507       Special Problems in Biochemistry
Lectures, seminars, term papers and training in theoretical and/or laboratory methods.
Course Hours:
H(3-3)
Prerequisite(s):
Completion of at least 9 full-course equivalents and consent of the Department.
Notes:
Students completing a typical course sequence in their program would normally be eligible to enrol in their 3rd or 4th year. After consultation with a departmental faculty member who will supervise the chosen problem, a permission form obtained from the department office or website must be signed by the course supervisor before a student can register.
MAY BE REPEATED FOR CREDIT
back to top
Biochemistry 528       Independent Studies in Biochemistry
Original and independent thought, practical research and the completion of written and oral reports.
Course Hours:
F(0-6)
Prerequisite(s):
Completion of at least 15 full-course equivalents and consent of the Department.
Notes:
After consultation with a departmental faculty member who will supervise the chosen problem, a permission form obtained from the department office or website must be signed by the course supervisor before a student can register.
MAY BE REPEATED FOR CREDIT
back to top
Biochemistry 530       Honours Research Project in Biochemistry
Research project under the direction of one or more faculty members in the Department of Biological Sciences. Formal written and oral reports must be presented on completion of this course. Open only to Honours Biochemistry students or Honours Biological Sciences students.
Course Hours:
F(0-8)
Prerequisite(s):
Completion of at least 15 full-course equivalents and consent of the Department.
Notes:
After consultation with a department faculty member who will supervise the chosen problem, a permission form obtained from the department office or website must be completed before a student can register.
back to top
Biochemistry 543       Enzymology
The structure, mechanisms and biological interactions of enzymes. Binding, catalysis, rates and regulation will be discussed with regard to chemical principles of kinetics and reaction. The principles of enzyme action will be considered in the context of the biological role that enzymes play.
Course Hours:
H(3-0)
Prerequisite(s):
Biochemistry 393 or 443, and Chemistry 353 or 355.
back to top
Biochemistry 547       Signal Transduction and Regulation of Metabolism
Principles of signal transduction with examples from prokaryotes and eukaryotes. Discussion of protein covalent modifications, inositol lipid signaling, structure and function of protein kinases and protein phosphatases and their role in regulating various aspects of cell function. Emphasis on metabolic pathways, cell cycle control, checkpoints, DNA damage response and epigenetics.
Course Hours:
H(3-0)
Prerequisite(s):
Biochemistry 393 or 443.
back to top
Biochemistry 551       Structural Biology
Applications of modern methods to structural studies of proteins and nucleic acids by NMR and X-ray crystallography with a comparison of the structural information derived from the two methods. Crystallization of macromolecules. Experimental and theoretical foundations of X-ray and NMR structure determination, and ligand binding. Non-invasive NMR studies of metabolism, and magnetic resonance imaging.
Course Hours:
H(3-0)
Prerequisite(s):
One of Biochemistry 341 or 393, and one of Biochemistry 471 or Chemistry 371.
back to top
Biochemistry 553       Molecular Biophysics
A comprehensive survey of modern biophysics covering the flow and processing of matter, energy and information in living systems. Equilibrium and non-equilibrium thermodynamics in biology. Molecular motors and facilitated proton transport. An integrative approach connecting atomistic theories to cellular processes.
Course Hours:
H(3-0)
Prerequisite(s):
Biochemistry 341 or 393; and Biochemistry 471 or Chemistry 371.
Notes:
Prior completion of Biochemistry 555 is strongly recommended.
Also known as:
(formerly Biology 553)
back to top
Biochemistry 555       Biomembranes
The material examines the structure and function of biological membranes with a strong emphasis on the role of membrane proteins. Topics may include: the physical properties of lipid bilayers, isolation and purification of membrane proteins, preparation of membrane mimetic systems, ion and solute movement across membranes (transport and ion channels), membrane protein folding, assembly and structure, and protein secretion and translocation systems.
Course Hours:
H(3-1T-0)
Prerequisite(s):
Biochemistry 393 or 443.
Notes:
Prior or concurrent completion of Biochemistry 431 and 471 is strongly recommended.
back to top
Biochemistry 561       Applied Biochemistry and Biotechnology
An introduction to the language, materials, methods, concepts and commercial applications of biotechnology with emphasis on methodology: biocatalysts, bioreactor designs and operation, scale-up, instrumentation, product recovery, animal and plant cell culture, process economics.
Course Hours:
H(3-0)
Prerequisite(s):
Biochemistry 393.
Antirequisite(s):
Credit for both Biochemistry 561 and Biotechnology 561 will not be allowed.
Notes:
Prior completion of Cellular, Molecular and Microbial Biology 411 or Biochemistry 401 is strongly recommended.
back to top
Biochemistry 575       Lipids
Structure and function of lipids including phospholipids, sphingolipids, and steroids. Topics include properties of lipids and bilayers, lipid-lipid and lipid-protein interactions, technological applications, biosynthesis and regulation, lipids as second messengers, intracellular trafficking, and lipids in physiology and disease. Literature review and student seminars are significant components of this course.
Course Hours:
H(3-2T-0)
Prerequisite(s):
Biochemistry 393 or 443.
back to top
Biochemistry 577       Biomolecular Simulation
Introduction to simulation and computer modelling methods commonly used in biochemistry and biophysics, with a focus on physical models to understand the behaviour of biomolecules. Topics include simulation methods, dynamics of proteins, DNA, and lipids, calculation of binding constants, protein-drug interactions, properties of ion channels as well as a number of recent literature topics.
Course Hours:
H(3-4)
Prerequisite(s):
One of Biochemistry 341 or 393 and one of Biochemistry 471 or Chemistry 371.
back to top
Graduate Courses

Enrolment in any graduate course requires consent of the Department.

Only where appropriate to a student's program may graduate credit be received for courses numbered 500-599.

600-level courses are available with permission to undergraduate students in the final year of their programs.

See also the separate listing of graduate level Chemistry courses.

Biochemistry 641       Selected Topics in Biochemistry
Selected topics in Biochemistry such as those which appear annually in the serial publication Annual Review of Biochemistry.
Course Hours:
H(3-0)
MAY BE REPEATED FOR CREDIT
back to top
Biochemistry 731       Current Topics in Biochemistry
Contemporary methods of recombinant DNA technology will be combined with modern methods and strategies for expressing, secreting, purifying and characterizing proteins. This will include biophysical techniques, structural analysis and covalent modifications. Various modern 'omics' research approaches will also be discussed.
Course Hours:
H(3-0)
back to top